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Privacy risk assessment is key when releasing health data to ensure

released data does not contain identifiable patient information SI'I'UCI'UrEd &
unstructured

CHALLENGE: Risk assessments for data release are often manual, time
consuming and can prohibit data release, ultimately limiting new health and
social care innovation. Most health research is conducted using structured
data. Although unstructured data makes up 70-80% of health data, due to
both its unstructured format as well as privacy risks for patients its use is
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AIM: We apply Natural Language Processing (NLP) techniques to explore a
year's worth of hospital Discharge Summaries looking at privacy risks and
how these accumulate across reports, building a privacy risk map.

70-80% of health data is unstructured but its use in research is

Using the privacy risk map, we are building a dashboard that helps gain a limited due to privacy risk concerns. We define privacy risks as
better insight into privacy risks and enables assessment ahead of data direct or indirect.
release.

Direct identiﬁers

Medical record numbers ‘

/o Telephone numbers g_

Finding Indirect Privacy Risks
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Public Involvement & Engagement Work Next Steps
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Building a privacy risk dashboard
for information governance to
assess a cohort’s privacy risk,
based on known direct and our
map of indirect identifiers

 Some data should be coded to ensure valuable .
details for research are not lost while preserving
confidentiality. The process should involve discussion
with specialists.

e Audit trails and human assessment are necessary to
ensure processes run correctly
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